(Directory and \$Path initialization not included.)
Needs ["KnotTheory`"] Loading KnotTheory` version of September 6, 2014, 13:37:37.2841.
Read more at http://katlas.org/wiki/KnotTheory.
A simple link, albeit with ambiguous orientation:
hopfGC $=\{\{1,-2\},\{2,-1\}\} ;$

I ask for its planar diagram:
hopfPD = PD [GaussCode @@ hopfGC]
KnotTheory::credits : The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
$\operatorname{PD}[X[4,1,3,2], X[2,4,1,3]]$
But that's impossible. Here are those crossings...

... and I try to connect them ...

... but 3 and 4 are trapped on opposite sides.
DrawMorseLink finds out:
DrawMorseLink [hopfPD]
KnotTheory:: credits: MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005.

Part::partw : Part 3 of Knot[MorseLink::Error: bad input] does not exist. >>
Part:::partw : Part 2 of Knot[MorseLink::Error: bad input] does not exist. >>
Part::partw : Part 4 of Knot[MorseLink::Error: bad input] does not exist. >>
General::stop : Further output of Part:: partw will be suppressed during this calculation. >>
\$Aborted

Jones doesn't panic, justs gives wrong stuff:
Factor [Jones [hopfPD] [t]]
$-\frac{1+\mathrm{t}}{\sqrt{\mathrm{t}}}$
Same link, in hopes of coaxing:
hopfGC2 = \{\{1, -2\}, \{-1, 2\}\};
Still wrong:
hopfPD2 $=$ PD [GaussCode @@ hopfGC2]
$\operatorname{PD}[\mathrm{X}[3,2,4,1], \mathrm{X}[2,4,1,3]]$
DrawMorseLink [hopfPD2]
Part::.partw : Part 3 of Knot[MorseLink::Error: bad input] does not exist. >>
Part:.:partw : Part 2 of Knot[MorseLink::Error: bad input] does not exist. >>
Part:.:partw : Part 4 of Knot[MorseLink::Error: bad input] does not exist. >>
General::stop : Further output of Part:.:partw will be suppressed during this calculation. >>
\$Aborted

Jones is still wrong, but different.
Factor [Jones [hopfPD2] [t]]
$-t(1+t)$
But isn't the Hopf link in the big list?
AllLinks [2, Alternating]
\{Link[2, Alternating, 1] \}
hopf0 = Link[2, Alternating, 1]
Link[2, Alternating, 1]
This is good, but perhaps only because it was precomputed...
PD[hopf0]
KnotTheory::loading: Loading precomputed data in PD4Links`.
$\operatorname{PD}[X[4,1,3,2], X[2,3,1,4]]$

... and this looks okay, until you realize we saw it before.
GaussCode[hopf0]
GaussCode[\{1, - 2$\},\{2,-1\}]$
Nice picture ... until you follow the orientation! (Two praying mantises locked in a death-kiss?)

This was run in Mathematica 10, but the same sorts of things were present in 9 (and even $8, I$ believe). The same behavior occurs in a "version of March 22, 2011, 21:10:4.67737".

Other trivial links suffer similarly. Two overlapping unlinked components can even produce the same impossible planar diagram:

```
PD[GaussCode[{1, 2}, {-1, - 2}]]
```

$\operatorname{PD}[\mathrm{X}[3,2,4,1], \mathrm{X}[4,1,3,2]]$

PD[GaussCode[\{1, - 2\}, \{-1, 2\}]]
$\operatorname{PD}[X[3,2,4,1], X[2,4,1,3]]$

